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The problem of determining the mean stress and the other macrovariables ori- 

ginates upon passing from the equations of motion which are valid in the micro- 

scale, to the macroscopic equations which describe the motion of continuous 
media (suchas a turbulized fluid,an elastic medium with microdefects, the suspen- 

sion of gas bubbles or solid particles in a fluid, etc.). The mean value of the 
stress tensor over a volume was introduced in the monograph [I], and precisely 

this quantity was used in the governing relations to compute the Einstein visco- 

sity of suspensions. Moreover, some effective representation in terms of integrals 
over surfaces [l] was used in specific calculations of these means with respect 
to the volume, Later, Batchelor [ 21, and some other authors after him [3], used 
precisely these means with respect to the volume as the stresses in the macro- 

equations of motion by assuming the equivalence between the average with res- 

pect to a volume and with respect to a surface. Hence, in particular, the abso- 
lute symmetry of the macrostress tensor follows in the above-mentioned cases. 

In this paper it is shown that the average of the microstress tensor and the 
microflux of the momenta with respect to the volume according to the rule in 

[l] determines only some symmetric part of the complete macrostress tensor. 

For the simple case of a viscous fluid moving inhomogeneously over a micro- 
level, this mean of the tensor with respect to the volume is related linearly to 
the mean strain rates. Moreover, the representation used in [1] permits clarifi- 

cation of the essential difference between the mean stresses with respect to the 
volume and with respect to the surfaces, in the general case. 

The method of integrating the microequations with respect to the vloume 

[4 - 61 naturally results in the appearance of stresses in the macroequations, 
which are the means with respect to the differential macroareas. It is essential 
that the macrostress tensory is hence generally nonsymmetric although the equa- 
tions of motion in the microscale correspond to symmetric continuum mechanics. 
It is this consideration which permitted the development of the continuum equa- 
tions of motion of a suspension, which reflects the effect of nonequilibrium intrin- 
sic rotation of the suspended particles [7], and the case of a turbulized fluid with 

anisotropies of eddy character is set in conformity to the nonzero antisymmetric 
part of the Reynolds stresses [8]. 
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1. Let us separate the two scales of the investigation of complex flows, the micro- 

scale and the macroscale, and let us seek the continuum macroequations by considering 
that the continuum equations for the microscale are known. To wit, in each differential 
microelement d1’ =-= dzldr,c& , let the following equations of mass and momentum bal- 
ance be satisfied : 

d[J 3 (1 i, 

()I -; 
-_L -J (1.1) 

dx; 

(1.2) 

where p is the density, ICY is the local velocity, sii is the microstress tensor, Fi is the 
mass force. In case the microtensor U’ij is nonsymmetric. (1.1) and (1.2) must be supple- 
mented by the balance equation for the moment of momentum. However, let us here 

limit ourselves to the consideration of the case of a symmetric microstress, related line- 
arly to the strain rate tensor (A ijkl is the tensor of viscosity coefficients) 

5ij SE Sji = ‘/,/I ijkr (au, / 8x1 + 8Ur / ax,) - p6 ij (1.3) 

Multiplying (1.2) by the coordinate Z/i results in the relationship 

(1.4) 

which permits [l, 21 direct expression of the momentum flux tensor. If (1.4) is multi- 

plied by the alternating Levi-Civitta tensor &lib , then it goes over into the balance 
equation of the moment of momentum 

(1.5) 

Here the symmetry condition of the momentum microflux erik (Q. - PU~U~) = 0 has 
been taken into account. 

Integrating (1.1) - (1.5) with respect to the volume V, the Ostrogradskii-Gauss theo- 
rem can be applied in the case of continuous fields of variables 

(1.6) 

and the surface integral is taken over the whole surface S of the volume J’. In the 
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absence of inertial and mass forces, the fourth relations~p in (1.6) agrees with the Lan- 

dau and Lifshits representation [l]. connecting the mean of the stress tensor with repect 

to the volume and the integral of the surface forces. 

2. Let I/ be the elementary macrovolume V = AXIAXsAXs, where Xi are the 

macrocoordinates of the center of mass of the volume V. Now, if Eqs. (1.5) are divided 

by the volume V, they go over into the averaged equations 
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where 
elik (qik) = elik <oUj~k) = 0 

and the meaning of the averaging symbols is illustrated as follows: 

s 

AXj 
sij dV, <cij>i = ~x1Ax2Ax3 

s 
cijnj dS, dSj = 18.~ n’S 

v S 

(2.1) 

(2.2) 
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(2.4) 
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where Sj is the area of the faces of the volume v = AXIAX,AX, with the normal nj. 
If (2.2) is now multiplied by Xk, we then obtain 

a <PU,X 1 
<p”.” .> - (5, .) = 

a (P"i"jx,>j a ("ijxk),j 
%hk zh k at k + axj - “Xj - iFiX,> (2.6) 

Subtracting this result from (2.4) determines the difference 

between the mean values of the momentum fIux over the volume and over the surface, 

Here Eh. = rh. - Xh- is the coordinate relative to the center of mass of the volume V, 

If (2.7) is multiplied by the tensor Eli&, then the equation of the inner moment of mo- 

mentum in the volume V 

‘lik (Gik 
- puirtk)k z 
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(2.8) 

will be the result. 
Therefore, the macrostress tensor <aij)jr which is the mean with respect to the surface 
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in conformity with the initial Cauchy representations [9] enters the averaged momentum 
equation. According to (2.7). the mean of the stress tensor with respect to the volume 

<aij) is generally only a part of the mean with respect to the surface <aij)j and cannot 

be used directly in the momentum balance equation (2.2). The antisymmetric part of 

the macrotensor (o#j enters into the balance of the inner moment of momentum, as 

should have been expected. 

3, A very important element in compiling the macroequations of motion is the cal- 
culation of the connection between the macrostresses (cij}j and the field of mean velo- 
cities Ui (Xj, E). The instantaneous mean velocity in the Euler macrovolume ii is in- 

troduced [S] as the mean mass and is referred to the center of mass with coordinates Xi 

(9) Ui = <p~~i) (3.1) 

(P>Xi ;-_ (pri), <P&1 = 0 (3.2) 

Then the field of local velocities ui fzj, 1) and the field of mean velocities ui tzj, 1) 
are represented in the volume as 

Zii (Zj, I) = Ui (xj, t) + ?‘i (xj, F) 
C’i (xi, t) zz CL (Xj, I) -+ (dC’i / aXj)(Zj - Xj) 

where oi is the pulsation velocity at the micropoint xi. 

According to (3.1), we have (9~~) -= 0. Moreover, if we set (vi)j = 0, i.e. accept 
the hypothesis of agreement between the results of volume and surface averaging for 

the vector quantities <ui>j = Ui, then (2.3) becomes 

Therefore. the mean stress with respect to the volume is that part of the macrostress 
(aii>j which corresponds to the viscous stresses governed by a mean velocity field. 

On the other hand, the local value of the stress is also representable as 

Hence, the deviator part of the macrostress <5zj>j differs from the mean with respect to 
the volume because of the nonzero pulsation velocity gradients on the faces of the vo- 
lume V. By virtue of (3.3). Eq. (2.7) also yields another representation for the macro- 

stresses 

<Sij>j- (P'Liuj)j 
(3.4) 

and the symmetric and antisymmetric parts can be separated in the additional tensor 

rij l If it is considered that the micromotion in the volume V is known, then the rela- 
tionship (3.4) permits evaluation of the macrostress in terms of the surface quantities 
(integrals). It is easy to see that the representation (3.4) differs substantially from the 
computed Batchelor representation [Z] (if the latter is used for the case of homogeneous 
fluid motion perturbed on a microlevel, which is under consideration). 
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4, Let us now mention the accepted interpretation of the macroquantities of the 
balance equations (2.1) - (2.5) 

(PUi)i= (P)uj, <Puiuj>j = --Rij + (p>lJiUj, Rij = --(pUiCj>j # - (pViVj> 

(&likpuikk) = Ml, (Elik puiujEk>j = -_Plj -t MllJj 

where Rij are the Reynolds turbulent stresses, Ml is the internal angular momentum, 
urj are the turbulent couple-stresses. As regards the quantities 

Tin = (Eijk ‘j, Et), 

they can be interpreted as viscous couple stresses due to the pulsations of viscous stresses 
on the appropriate faces of the volume V. 

We also introduce the notation 

(FiEh.) = @ik, <CTijEk)j = niik 

(PUikl;) = ‘$ik, (pUi!tjEh>j = -!-(ijh. $ $'ikuj 

where, in conformity with the Mindlin representations [lo]. @ik is a mass couple force, 

“/‘i/i is the intrinsic distortion, IIijk are viscous couple saesses, and L:ij;r are turbulent 

couple stresses. 

Now, (3.4) becomes 
<sii>j + Rij = 2 _L A,jk[ + 

au, 
ax, 

> 
- (P) ‘ij - 

In the particular case of no inertial or mass forces, we obtain 

ani2i 
- <p) 6ij = ax t <5ij)j 

1 

and this means that the representationof the mean stress withrespect to the volume in terms of 

the surface integral [1] reduces to its being equal to the sum of the macrostresses and macrodi - 

vergences of the couple stress. Only in the absence of the couple stress (as well as the inertial 
and mass effects) will the means with respect to the volume and the surface stresses be 

equal. In the general case they are different and not only by the antisymmetric part. 

The closing relations introduced here between the macrotensors and the corresponding 
kinematic macrovariables have the form of tensor relationships. Such quantities as the 

couple and double stresses are hence different from zero if there are additional ( l ) kine- 

matic degrees of freedom (fields) in addition to the mean translational velocitv Ui. The 

extraction of such quantities in the case of a turbulent fluid was given in [8 - 111. The 
nature of the closing isotropic relations was developed in n2] for symmetric tensors and 

in [13] for asymmetric tensors. 

If the hypothesis of equal mean stresses with respect to the volume and with respect 
to the surfaces is accepted, and thereby the condition of the disappearance of antisym- 
metric macrostress tensor components is accepted, then this will correspond to a more 

*) The additional dynamical and kinematical variables in generalized continuum me- 
chanics are sometimes called microvariables (see [lo]). It should be kept in mind that 
these microvariables (in contrast to those mentioned in this paper) are mean values. 
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particular type of closing relations (motions ln the microscale). 

The author is grateful to R.I.Nigmatulin for discussing the results. 
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